
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Rectangular-cavity resonances enhanced
absorption in metallic-nanoshelled 2D rod arrays
and 3D photonic crystals

Jiafang Li1,2,3, MD Muntasir Hossain1, Baohua Jia1 and Min Gu1,3

1 Centre for Micro-Photonics and CUDOS, Faculty of Engineering and
Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC 3122,
Australia
2 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, People’s Republic of China
E-mail: mgu@swin.edu.au and jiafangli@aphy.iphy.ac.cn

New Journal of Physics 12 (2010) 043012 (7pp)
Received 13 November 2009
Published 1 April 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/4/043012

Abstract. A metallic-nanoshelled rectangular dielectric rod is proposed to
flexibly enhance and tune the structural absorption. Due to the ultra-small
thickness of the metallic-nanoshells, electromagnetic (EM) waves can penetrate
into the rods and rectangular cavity resonances can be formed. At the cavity
resonances, the strong EM wave–matter interaction results in an enhancement in
the structural absorption by more than one order of magnitude. By stacking the
nanoshelled rods, a three-dimensional (3D) woodpile photonic crystal with both
the rectangular cavity resonance and the photonic band gap effect is realized.
As a result, the structural absorption of the nanoshelled 3D photonic crystal is
significantly enhanced to ∼99.99% at the resonant wavelength.

Metallic nanostructures [1], ranging from metallic nanoslits [2, 3] to three-dimensional (3D)
metallic photonic crystals (MPCs) [4, 5], have been extensively studied for their intriguing
properties such as enhanced transmission [2], resonant absorption [1], [6–8] and strong field
enhancement [9]. Most of the unique features of the metallic nanostructures are induced by
either the collective plasmonic effects [6, 9, 10] or the optical cavity resonances [3, 11].
For example, metallic spherical nanoshells [1, 6] have been well investigated for their strong
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Figure 1. (a) Schematic diagram of an array of rectangular NRods consisting of
dielectric cores (with height H , width W , refractive index n and infinite length)
and gold nanoshells (with a thickness D). The NRods are periodically separated
by a distance a. (b) Absorption enhancement of NRods compared with pure
MRods under H = 300 nm (dashed line), 400 nm (solid thin line) and 500 nm
(solid thick line). Other simulation parameters: W = 400 nm, D = 15 nm, a =

800 nm and n = 1.56. Inset: absorption spectra of an MRod and an NRod with
the same geometrical parameters.

absorption caused by localized plasmon modes [10]. However, one problem of those ultra-
small nanoparticles is that the field enhancement area is concentrated close to the surface of the
nanoshells (<10 nm), where the fluorescence quenching effect occurs and limits the applications
to plasmon-enhanced fluorescence [11]. On the other hand, by utilizing the optical cavity modes,
field enhancement of a large volume [11] and the strong structural absorption have been realized
in large-scale nanoshells [11] and 3D MPCs [5, 12, 13]. However, the absorption enhancement
and tunability are less appealing and the structures are difficult to integrate into solid-state
nano-devices.

Here we propose to enhance and tune the structural absorption by employing a rectangular
cavity resonance in a nanoshelled rod (NRod), which consists of a dielectric rectangular rod
coated by a gold nanoshell, as shown in figure 1(a). Compared with the ‘external’ cavity
formed within the dielectric spacer between the metallic rods of the 3D MPCs [5, 12, 13],
the rectangular cavity within our NRods is an optical ‘internal’ cavity, which is much simpler
in geometry and more flexible in tunability. Moreover, our NRods facilitate the resonances
of higher-order cavity modes and the peak absorption can be enhanced by more than one
order of magnitude compared with that of pure metallic rods (MRods). More importantly, by
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integrating the NRods into a 3D woodpile photonic crystal, the structural absorption at the
resonant wavelength is further enhanced to ∼99.99%, which is not applicable to conventional
3D MPCs [14].

Figure 1(a) shows the schematic diagram of our simulations. Linearly polarized light is
incident on an array of parallel NRods from the top. The light polarization is perpendicular
to the NRods, which have a width of W , a height of H and a shell thickness of D. The key
factor to introduce the optical internal cavity is the shell thickness. In our NRods, the small
thickness of the metallic nanoshells (D < 50 nm) allows the penetration of the electromagnetic
(EM) waves into the rods. Therefore, with the cavity boundaries naturally provided by the
rectangular nanoshells, certain resonances can be formed. To confirm the existence of the cavity
resonances, the transmission, reflection and absorption properties of the NRods (and all the other
structures in this paper) are calculated in three dimensions with the frequency domain solver
of a CST software package. In the numerical calculations, we use the plane wave excitation
performed with a Gaussian pulse. To meet the convergence criterion, an adaptive tetrahedral
mesh refinement system is activated for the finite element meshing during the running of
the frequency domain solver. In such a system, after the initial meshing of the first pass,
multiple passes (with improved meshing) will be run until the sufficient scattering parameters
convergence criterion is satisfied. For simplicity, we consider the nanoshell material as gold with
optical properties described by the Drude model with epsilon infinity ε∞ = 1, plasma frequency
f p = 2172 THz and relaxation time τ = 27.4 fs [12].

As shown in the inset of figure 1(b), there is a big difference in the absorption spectra
between an NRod and an MRod (the MRod has the same geometrical parameters as the NRod
except that the dielectric part of the NRod is replaced by pure gold). At certain resonant
wavelengths (λc), the absorption of the NRod is enhanced by more than ten times compared
with that of the MRod, which results from the strong EM wave–matter interaction at the cavity
resonances. Moreover, this enhancement in absorption is extremely sensitive to the structural
parameters. Figure 1(b) shows that λc shifts towards shorter wavelengths and the absorption
enhancement grows as the rod height is decreased. The linear relationship between λc and the
rod height is further demonstrated in figure 2(a), where the rod width is kept unchanged. We also
confirm that λc changes linearly with the refractive index of the embedded dielectrics inside the
NRod (not shown). These linear relationships are consistent with the formula of a rectangular
cavity resonance, i.e. mλc = 2nH + 1ϕ(λc) [15]4, where m is the order of the resonance and
1ϕ(λc) is the extra phase shift at wavelength λc induced by the metallic nanoshells. This
formula is somewhat like the model of a planar Fabry–Perot (FP) cavity. In fact, our simulations
show that when the rod width is simply increased, the value of λc decreases correspondingly
and finally approaches the resonant wavelength of an FP cavity that has the same height H but
an infinite width, as shown in figure 2(b). This indicates that the left side and right side metallic
shells of the rod (separated by the dielectric rod width W ) provide an additional confinement of

4 For a dielectric rectangular cavity with a length of L x , a width of L y and a height of L z , the cavity resonant
frequency satisfies flpm = (c/2n)

√
(l/L x )2 + (p/L y)2 + (m/L z)2, where n is the refractive index and the three

subscripts {lpm} designate a TE standing wave pattern in the cavity. In the case of p = 0 and L x = ∞, the resonant
wavelength becomes λ = 2nL z/m. When the dielectric rectangular cavity is coated with a metallic nanoshell,
an additional phase shift is induced. Therefore, the cavity resonant wavelength λc in NRods with height H can
be written as mλc = 2nH + 1ϕ(λc), where the wavelength-dependent 1ϕ is determined by the thickness of the
nanoshells as well as the width of the NRods.
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Figure 2. Resonant wavelength (λc) as a function of the rod height (a) and rod
width (b). The relative geometries of the cross-sections of the rods are depicted in
the insets. It is shown that when the rod width is simply increased, λc approaches
the resonant wavelength of an FP cavity with H = 600 nm and W = ∞.

the penetrated EM waves and induce a positive 1ϕ. Therefore, simply changing the rod height,
the rod width or the dielectric refractive index of the NRods offers great flexibility to tune the
enhanced absorption channel.

In addition, based on the cavity resonance formula, it is expected that multiple orders of
resonance can be formed inside the NRods. Our simulation, as illustrated in figure 3 (left),
indeed shows multiple enhanced absorption peaks, where the simulated E-field distributions
inside the rod unambiguously confirm the standing cavity modes in the propagation direction
(as shown in figure 3 (center and right)). It should be mentioned that the thickness of the
metallic shell also influences the position of λc (through mediating the value of 1ϕ, not shown).
However, as mentioned earlier, the shell thickness is the key factor to induce the enhanced
absorption and its value should be always less than 50 nm. If it is too large, no light can penetrate
into the NRod and no cavity resonance can be coupled. For example, when D > 60 nm, the
NRod acts exactly as an MRod and the corresponding enhancement factor drops close to 1.
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Figure 3. Absorption spectrum (left) and internal E-field distribution at the
resonant frequencies (center) of NRods. (Right) Schematic diagram of the cavity
resonances at corresponding orders of the resonances. Simulation parameters:
W = 400 nm, H = 1000 nm, D = 15 nm, a = 1000 nm and n = 1.56.

One straightforward application of the NRods is the utilization of the NRods as building
blocks to stack 3D nanoshelled photonic crystals (NPCs), as shown in the schematic of
diagram 4(a). In such a scheme, the rectangular cavity of NRods could offer 3D NPCs
novel properties beyond the conventional photonic band gap effects. As shown in the inset of
figure 4(b), due to the cavity resonance of the NRods, a sharp ‘dip’ appears in the band edge
region of a four-layer 3D NPC, where the slow light effect takes place [14]. As a result of the
combination (of the cavity resonance and the band edge effect [14]), the structural absorption of
the 3D NPC is increased to ∼99.99% (figure 4(b)), which is significantly enhanced compared
with that of a 2D NRod array and a 1D thin film. Moreover, this nearly 100% absorption in the
3D NPC is much higher than the band-edge-enhanced absorption of a 3D gold MPC (∼49% in
our calculation with structural geometrical parameters the same as those of the NPC) and that
of the published 3D tungsten MPCs (<60%) [14].

In conclusion, we have theoretically demonstrated an NRod to flexibly enhance and tune
the structural absorption. By employing an ultra-thin metallic nanoshell, rectangular cavity
resonances with multiple orders can be formed, which enhance the absorption of the NRod by
more than one order of magnitude. Furthermore, by stacking the NRods into 3D, a nearly 100%
absorption can be achieved in a woodpile NPC. The investigated absorption enhancement and
tunability, as well as the higher-order mode excitation, provide the feasibility to explore NRods
as a candidate for potential photonic devices such as nanoscale sensors, efficient radiation
sources and solar cell systems [8]. Experimental realization of the NRods and NPCs could be
through coating the easy-to-fabricate dielectric structures with metallic nanoshells by employing
chemical approaches such as the chemical vapor deposition method [16] or the electroless
deposition method [17].
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Figure 4. (a) Schematic diagram of a four-layer 3D photonic crystal formed by
stacking 2D NRods (figure 1(a)) into a woodpile geometry. The adjacent layers
are rotated by 90◦ and separated by a distance H . Between every other layer,
the NRods are shifted relative to each other by a/2. In following simulations,
the incident light is linearly polarized perpendicular to the first-layer rods. For
simplicity, the rod length in simulations is infinite in each layer. (b) Absorption
spectra of a 1D film (with thickness D), 2D NRods and a 3D NPC. Inset:
calculated reflection spectrum of the 3D NPC in 4(b). The arrow indicates a
rectangular-cavity-resonance-induced dip near the band edge region of the NPC.
Calculation parameters are shown in the inset, which are chosen to match the
optical cavity resonance with the photonic band edge.
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